Homeomorfismos Ergódicos e o Teorema de Oxtoby-Ulam

Luiz Guilherme de C. Lopes Universidade federal de Santa Catarina - UFSC, Brasil luizgui05@gmail.com

Introdução

Em mecânica, um dos problemas fundamentais consiste em descrever qualitativamente a evolução de um sistema dinâmico para o qual está dada uma condição inicial.

Na abordagem clássica queremos responder à pergunta "dada uma condição inicial, qual é o estado do sistema no tempo t?"

Já na abordagem estatística, buscamos responder a "dada uma condição inicial, qual é a probabilidade de que o estado do sistema esteja, no tempo t, num dado conjunto de estados possíveis?"

Interessado nessa abordagem o físico Ludwig Boltzmann formulou ao final do século XIX a seguinte hipótese ("Hipótese Ergódica de Boltzmann"), a saber:

Hipótese Ergódica de Boltzmann Para cada condição inicial x num espaço de estados X e cada $\varphi:X o\mathbb{R}$ "observação" integrável com respeito a uma probabilidade P , existe a média temporal assintótica das observações dos estados do sistema $f: X \to X$ e esta coincide com a observação média sobre o espaço de todos os estados possíveis X. Ou seja,

$$\lim_{N\to\infty} \frac{1}{N} \sum_{i=0}^{N-1} \varphi(f^i(x)) = \int_X \varphi(x) dP(x).$$

A despeito de muitas conclusões físicas corretas obtidas por Boltzmann, sua hipótese provou-se matematicamente errada.

Essa questão foi colocada em base matemática sólida pelo matemático George David Birkhoff em 1931 ao demonstrar o seguinte resultado.

Teorema Ergódico de Birkhoff Para P-quase toda condição inicial $x \in X$ o limite acima existe e, além disso, a igualdade acima é verdadeira se, e somente se, o sistema $f: X \to X$ é ergódico com respeito a P.

Após o surgimento do Teorema Ergódico de Birkhoff surgiu a pesquisa sobre a existência de homeomorfismos ergódicos sobre um espaço clássico dado. Neste trabalho apresentamos a resposta obtida por Oxtoby e Ulam para o caso no qual o espaço em questão é o cubo unitário n-dimensional.

Definições

Definição .1. Dados um espaço de probabilidade (X, \mathcal{X}, μ) e uma transformação mensurável $T: X \to X$, dizemos que T preserva a medida μ se $\mu(T^{-1}(A)) = \mu(A)$ para todo $A \in \mathcal{X}$

Definição .2. Um conjunto $A \in \mathcal{X}$ é dito T-invariante se $T^{-1}(A) = A$.

Definição .3. Se T preserva μ , então T é dita *ergódica* se todo conjunto invariante tem medida 0 ou 1. Em outras palavras, T é ergódica se o sistema dinâmico mensurável (X, \mathcal{X}, μ, T) não admite subsistemas não-triviais.

Definição .4. Um conjunto que é interseção enumerável de conjuntos abertos é dito *conjunto*

Definição .5. Um conjunto que é interseção enumerável de conjuntos abertos e densos é chamado de residual.

Definição .6. Dado um espaço métrico X, dizemos que uma propriedade P é genérica sobre X se o conjunto dos pontos de X que satisfazem P é um conjunto residual.

Definição .7. Denotamos por $\mathcal{H}(I^n, \mu)$ o conjunto de todos os homeomorfismos sobre o cubo unitário n-dimensional que preservam μ (aqui μ é a medida de Lebesgue sobre I^n e será dita volume) munido da métrica uniforme:

$$d_{U}(f,g) = \max_{x \in I^{n}} d(f(x), g(x)) \quad (f,g \in \mathcal{H}(I^{n})), \tag{1}$$

onde d denota a distância euclidiana em \mathbb{R}^n .

Definição .8. Denotamos por $\mathcal{G}(I^n, \mu)$ o conjunto de todos os automorfismos que preservam o volume μ sobre I^n . Considere a *métrica uniforme* sobre $\mathcal{G}(I^n, \mu)$:

$$d_1(f,g) = \inf\{\delta > 0 : \mu(\{x : |f(x) - g(x)| > \delta\}) = 0\} \quad (f,g \in \mathcal{G}(I^n,\mu)). \tag{2}$$

Observe que $d_1(f,g) = d_u(f,g)$ sempre que $f,g \in \mathcal{H}(I^n,\mu)$. Conside também a *métrica fraca* sobre $G(I^n, \mu)$:

$$d_2(f,g) = \inf\{\delta > 0 : \mu(\{x : |f(x) - g(x)| > \delta\}) < \delta\} \quad (f,g \in \mathcal{G}(I^n,\mu)). \tag{3}$$

Aproximação por permutações diádicas cíclicas

Definição .9. Dados $n \ge 2$ e $m \in \mathbb{N}$ definimos a decomposição diádica de ordem m de I^n como a coleção dos $N=2^{n\dot{m}}$ subcubos congruentes da forma $\left[\frac{i_1}{2^m},\frac{i_1+1}{2^m}\right]\times ...\times \left[\frac{i_m}{2^m},\frac{i_m+1}{2^m}\right]$ com $i_1, ..., i_n \in \{0, ..., 2^m - 1\}.$

Denotamos uma decomposição diádica por $\{\sigma_i\}_{i=1}^N$, onde σ_i é o i-ésimo subcubo de uma enumeração fixada arbitrariamente.

Uma permutação diádica de ordem $m \in \mathbb{N}$ é uma transformação $P:I^n \to I^n$ que age sobre alguma decomposição diádica de ordem m de I^n , digamos $\{\sigma_i\}_{i=1}^N$, da seguinte maneira: $P(\sigma_i) = \sigma_{i(i)}$.

Resultados

Teorema .10. *(Lax)*

Dados $h \in \mathcal{H}(I^n, \mu)$ e $\varepsilon > 0$, se $m \in \mathbb{N}$ é suficientemente grande, então existe uma permutação diádica P cíclica de ordem m tal que $d_1(h, P) < \varepsilon$.

Teorema .11. Seja P uma permutação diádica cíclica sobre uma decomposição $\{\sigma_i\}_{i=1}^N$ de Iⁿ.

Então, existe $f \in \mathcal{G}(I^n, \mu)$ ergódico tal que $d_1(P, f) < \max diam(\sigma_i)$, onde diam (σ_i) denota o diâmetro de σ_i e i = 1, ... N.

Teorema .12. (Halmos)

Seja $\mathcal{E} \subset \mathcal{G}(I^n, \mu)$ o conjunto dos automorfismos ergódicos. Então, \mathcal{E} é um conjunto G_{δ} na topologia gerada pela metrica fraca d₂.

Teorema .13. (Alpern)

Seja $\mathcal{E} \subset \mathcal{G}(I^n, \mu)$ um subconjunto G_{δ} na topologia gerada pela métria fraca d_2 . Se $\mathcal{H}(I^n, \mu) \subset \overline{\mathcal{E}}^{unit.}$, então $\mathcal{E} \cap \mathcal{H}(I^n, \mu) \subset \mathcal{H}(I^n, \mu)$ é um conjunto G_{δ} denso na topologia gerada pela métrica uniforme d₁.

Teorema de Oxtoby-Ulam

Teorema .14. (Oxtoby-Ulam)

Genericamente com respeito à topologia uniforme, um homeomorfismo que preserva a medida de Lebesgue sobre o cubo unitário n-dimensional é ergódico.

Ideia da prova:

Seja $\mathcal{E} \subset \mathcal{G}(I^n, \mu)$ o conjunto dos automorfismos ergódicos.

Pelo Teorema de Halmos (Teorema .12), \mathcal{E} é um conjunto G_{δ} na topologia gerada pela métrica fraca d_2 .

Pelo Teorema de Alpern (Teorema .13) é suficiente mostrar que $\mathcal{H}(I^n, \mu) \subset \overline{\mathcal{E}}^{\text{unif.}}$.

Sejam $\varepsilon > 0$ e $h \in \mathcal{H}(I^n, \mu)$. Pelo Teorema de Lax (Teorema .10), para cada $m \in \mathbb{N}$ suficientemente grande, existe P permutação diádica cíclica de ordem m tal que $d_1(h, P) < 1$ $\varepsilon/2$.

Pelo Teorema .11, existe $f \in \mathcal{E}$ tal que $d_1(f, P) < \varepsilon/2$, donde $d_1(h, f) < \varepsilon$.

Daí, como $h \in \mathcal{H}(I^n, \mu)$ é arbitrário, obtém-se $\mathcal{H}(I^n, \mu) \subset \overline{\mathcal{E}}^{\text{unif.}}$, como desejado.

Para uma exposição completa e detalhada dos resultados acima, veja o trabalho de conclusão de curso de graduação [2].

Agradecimentos

Eu gostaria de agradecer ao Prof. Dr. Rômulo Maia Vermersch pela orientação na realização deste trabalho. Também gostaria de agradecer ao Departamento de Matemática Pura e Aplicada da Universidade Federal de Santa Catarina (UFSC) e ao CNPq pelo suporte financeiro.

Bibliografia

- [1] Steve Alpern e V. Prasad. Typical Dynamics of Volume Preserving Homeomorphisms. Vol. 139. Cambridge Tracts in Mathematics, Cambridge University Press, 2001.
- [2] Luiz Guilherme de Carvalho Lopes. Homeomorfismos Ergódicos e o Teorema de Oxtoby-Ulam. https://repositorio.ufsc.br/handle/123456789/224913, 2021.
- Paul Halmos. Lectures on Ergodic Theory. Chelsea Publishing Company, 1956.
- J. C. Oxtoby e S. M. Ulam. "Measure-preserving homeomorphisms and metrical transitivity." Em: Ann. of Math. (2) 42.4 (1941), pp. 874–920.
- [5] Marcelo Viana e Krerley Oliveira. Foundations on Ergodic Theory. Vol. 151. Cambridge Studies in Advanced Mathematics, Cambridge, 2016. 2